
AGH University of
Science and Technology

Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php

Deep learning (also known as hierarchical learning) is a class of
machine learning algorithms and learning strategies that:
✓ Develop hierarchical deep structures and representation of primary and

secondary (derived) features, representing different levels of abstraction.

✓ Use a cascade of many layers of neurons (or other processing units) of
various kinds for gradual feature extraction and their transformation to
achieve a hierarchy of secondary, derived features which can led to
better final results of such constructed neural network. In this way, they
try to determine higher level features which are derived from lower level
features.

✓ Apply various supervised and unsupervised

✓ learning strategies to various layers.

✓ Gradually upgrade and develop a structure until

✓ significant improvement in performance is achieved.

Deep learning Convolutional Neural Networks are mostly popular today
because they allow achieving high-quality results. They were inspired by
biological retina and proposed by Yann LeCun in 1998 using Fukushima’s
Cognitron and Neocognitron (a model of neurons).

http://home.agh.edu.pl/~horzyk/index-eng.php

Deep learning strategies assume the ability to:

✓ update only a selected part of neurons that respond best to the given input
data, so the other neurons and their parameters (e.g. weights, thresholds)
are not updated,

✓ avoid connecting all neurons between successive layers, so we do not use
all-to-all connection strategy known and commonly used in MLP and
other networks, but we try to allow neurons to specialize in recognizing of
subpatterns that can be extracted from the limited subsets of inputs,

✓ create connections between various layers and subnetworks, not only
between successive layers

✓ use many subnetworks that can be connected in different ways in order to
allow neurons from these subnetworks to specialize in defining or
recognizing of a limited subsets of features or subpatterns,

✓ let neurons specialize and not overlap represented regions and represent
the same features or subpatterns.

http://home.agh.edu.pl/~horzyk/index-eng.php

For classification of images where objects can be located in
different places of the image, Convolutional Neural Networks
are especially useful because their convolutional layers are
insensitive for shifting the objects in the image, and they still
work correctly.

http://home.agh.edu.pl/~horzyk/index-eng.php

Convolutional Neural Networks arrange computational units (neurons) in 3D
(width, height, and depth). The neurons in each layer are only connected to a
small region of the previous layer instead of all-to-all (fully-connected) met in
typical artificial neural networks.

Moreover, CNNs (e.g. CIFAR-10) reduces full images to a single output vector
of class scores, arranged along the depth dimension as shown in the figure
below.

The following figure presents the comparison of typical and a deep
convolutional architecture:

http://home.agh.edu.pl/~horzyk/index-eng.php

Convolutional Neural Networks consist of (sample):

1. Input image [32x32x3] where the third parameter codes colors from R, G,
and B channels separately.

2. Convolutional layer (CONV) computes the output of neurons that are
connected to local regions
in the input image, each layer computes a dot product between their
weights and a small region.
This may result in volume such as [32x32x8] if we decide to use 8
convolutional filters.

3. ReLU layer (RELU) applies an elementwise activation function (such as
the max(0,x) introduced before) thresholding at zero. This layer leaves the
size of the volume unchanged [32x32x8].

4. Pooling layer (POOL) performs a downsampling operation along the
spatial dimension (width x height), resulting in the volume such as
[16x16x8]

5. Fully connected layer of a selected artificial neural network (FCNN)
computes the class scores (classification), resulting in volume of size
[1x1x5], where each individual output corresponds to one of
5 classes (scores, categories). This layer is fully connected to all outputs of
the previous layer and is trained using a gradient descent method.

http://home.agh.edu.pl/~horzyk/index-eng.php

A dot product (called also a scalar product) is an algebraic
operation that takes two equal-length sequences of numbers
(usually vectors, however matrices can be used as well) and
returns a single number that is computed as a sum of products of
equivalent values from these two sequences (vectors or matrices):

Suppose, we have two vectors:

𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 and 𝐵 = 𝑏1, 𝑏2, … , 𝑏𝑛

The dot product of these two vectors is defined as:

𝐴 ∙ 𝐵 =

𝑖=1

𝑛

𝑎𝑖 ∙ 𝑏𝑖

http://home.agh.edu.pl/~horzyk/index-eng.php

Each depth slice uses the same weights and bias for all neurons. In practice,
every neuron in the volume will compute the gradient for its weights during
backpropagation, but these gradients will be added up across each depth
slice and only update a single set of weights per slice. Thus, all neurons in a
single slice are using the same weight vector. The convolutional layer using
this vector computes a convolution of the neuron’s weights with the input
volume. Because the same set of weights is used it can be treated as an
adaptive filter convolving the input into the output scalar value.

Example of 96 filters [11x11x3]

learned by Krizhevsky at al. Each

filter is shared by 55x55 neurons in

one depth slice.

If detecting e.g. vertical line at some

location in the image, it should be

useful at some other location as

well

due to the translationally-invariant

structure of images.

Therefore, we do not need to

relearn to detect a vertical line

at every one of the 55x55 distinct

locations in the convolutional layer

output volume.

http://home.agh.edu.pl/~horzyk/index-eng.php

✓ Preserve a spatial structure of the image and its depth usually
defined by the color components.

✓ Convolve the filter (weight matrix) with the image, sliding
the filter over the image spatially computing dot products as
a result of the convolution (we call it a feature map).

✓ Such filters extend the full depth (here 3) of the input volume.

http://home.agh.edu.pl/~horzyk/index-eng.php

A convolutional layer works as
an adaptive filter that allow to set
values in such matrices:

𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

Using the other well-known filters
we can convolve an input image as
shown on the right.

We call the layer convolutional
because it is related to
the convolution of two signals,
i.e. a filter and the signal:

http://home.agh.edu.pl/~horzyk/index-eng.php

Sliding a filter over the image:

✓ When sliding the filter over the image, we always use the same filter for
a given slice of neurons.

✓ The resultant matrix consisting of the dot products of the filter and the
chunks of the image is called an activation map or a feature map.

✓ Its dimension can be smaller due to the size of the filter, used boarder
and stride that control the way how we slide the filter over the image.

http://home.agh.edu.pl/~horzyk/index-eng.php

We use many filters in each convolutional layer represented by slices of neurons:

http://home.agh.edu.pl/~horzyk/index-eng.php

In this example, 3 separate tables are used to visualize 3 slice of the 3D
input volume [5x5x3].

The input volume is in blue, the weight volumes are in red, and the
output volume is in green.

In this convolutional layer we will use the following parameters:

K = 2 (number of filters),
F = 3 (filter size 3x3 in green),
S = 2 (stride),
P = 1 (padding), which makes the outer
border of the input volume zero (in grey).

Hence, the output volume size is equal (5 - 3 + 2 · 1) / 2 + 1 = 3

The following visualization iterates over the green output activations,
and shows that each element is computed by elementwise multiplying
the highlighted blue input with the red filter, summing it up, and then
offsetting the result by the bias.

http://home.agh.edu.pl/~horzyk/index-eng.php

The weights are shared during the dot product computation:

http://home.agh.edu.pl/~horzyk/index-eng.php

The weights are shared during the dot product computation:

http://home.agh.edu.pl/~horzyk/index-eng.php

The weights are shared during the dot product computation:

http://home.agh.edu.pl/~horzyk/index-eng.php

The popular ConvNets are constructed as a sequence of many convolutional layers
that represent still more abstract features starting from low-level (primary, simpliest)
features, through mid-level (secondary) features, to high-level (more complex)
features which are finally used by dense layers (softmax) for classification.

Each neuron
shows the
average picture
generated from
all the same
chunks of
different training
images to which
it reacts the
strongest (wins
the competition).

Be careful
about

shrinking
the filter

sizes too fast
because it
does not

work well!

http://home.agh.edu.pl/~horzyk/index-eng.php

The pooling layer typically uses MAX operation independently
on every depth slice of the input and resizes it spatially.

The most common form of pooling is to use filters of size 2x2
applied with the stride 2, downsampling every depth slice in the
input by 2 along both width and height, discarding 75% of the
activations, because we always choose 1 maximum activation
from four activations in the region 2x2 in each depth slice. The
depth is always preserved.

http://home.agh.edu.pl/~horzyk/index-eng.php

Example of the recognition of human organs on RT images:

 Liver

 Heart

 Kidney

 Spleen

 others

http://home.agh.edu.pl/~horzyk/index-eng.php

A Convolutional Neural Network (CNN) comprises of one or more
convolutional layers (typically with a subsampling step) and then followed
by one or more fully connected layers
as in a standard multilayer neural network (e.g. MLPs), SVM, SoftMax etc.

A Deep CNN consists of more layers. The CNNs are easier to train and have
many fewer parameters (using the same weights) than typical neural
networks with regards to the number of convolutional layers and their size.

This kind of networks are naturally
suited to perform computations on
2D structures (images).

In the figure, the first layer of
a convolutional neural network
with pooling. Units of the same
color have tied weights and units of
different color represent different filter maps:

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php
https://jupyter.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
https://jupyter.org/
https://colab.research.google.com/notebooks/intro.ipynb
https://numpy.org/
https://scikit-image.org/
https://pandas.pydata.org/
https://mxnet.apache.org/
https://matplotlib.org/
https://numpy.org/
https://scikit-image.org/
https://pandas.pydata.org/
https://mxnet.apache.org/
https://matplotlib.org/
https://www.tensorflow.org/guide/effective_tf2
https://www.tensorflow.org/guide/effective_tf2
https://www.tensorflow.org/guide/effective_tf2
https://keras.io/
https://www.tensorflow.org/guide/effective_tf2
https://keras.io/

Jupyter is open, free and very popular:

https://jupyter.org/
http://home.agh.edu.pl/~horzyk/index-eng.php

Google Colab is an alternative notebook supported by Google using
a Google cloud where the computation can be executed (< 8 hours for free):

https://colab.research.google.com/notebooks/intro.ipynb
http://home.agh.edu.pl/~horzyk/index-eng.php

Keras developed by François Chollet:
• Is an official high-level and high-performing API of TensorFlow used to

specify and train different programs.

• Runs on top of TensorFlow, Theano, MXNet, or CNTK.

• Builds models by stacking layers and connecting graphs.

• Is actively developed by thousands of contributors across the world,
e.g. Microsoft, Google, Nvidia, AWS.

• Is used by hundred thousands of developers, e.g. NetFlix, Uber, Google,
Huawei, NVidia.

• Has a good amount of documentation and easy to grasp all concepts.

• Supports GPU both of Nvidia and AMD and runs seamlessly on CPU and
GPU.

• Is multi-platform (Python, R) and multi-backend.

• Allows for fast prototyping and leaves freedom to design and
architecture

http://home.agh.edu.pl/~horzyk/index-eng.php

Keras:

• Follows best practices for reducing cognitive load

• Offers consistent and simple APIs.

• Minimizes the number of user actions required for common use
cases.

• Provides clear feedback upon user errors.

• More productive than many other frameworks.

• Integrates with lower-level Deep Learning languages like
TensorFlow or Theano.

• Implements everything which was built-in the base language,
i.e. TensorFlow.

• Produces models using GPU acceleration for various systems like
Windows, Linux, Android, iOS, Raspberry Pi.

http://home.agh.edu.pl/~horzyk/index-eng.php

Keras is based on Computational Graphs like:

Where “a” and “b” are inputs used to compute “e” as
an output using intermediate variables “c” and “d”.

Computational Graphs allow expressing complex
expressions as a combination of simple operations.

http://home.agh.edu.pl/~horzyk/index-eng.php

We can create various sequential models which linearly stack layers and can be used
for classification networks or autoencoders (consisting of encoders and decoders) like:

http://home.agh.edu.pl/~horzyk/index-eng.php

Keras models can:
• Use multi-input, multi-output and arbitrary static graph topologies,

• Branch into two or more submodels,

• Share layers and/or weights.

http://home.agh.edu.pl/~horzyk/index-eng.php

We can execute Keras model in two ways:

1. Deferred (symbolic)

• Using Python to build a computational graph, next
compiling and executing it.

• Symbolic tensors don’t have a value in the Python
code.

2. Eager (imperative)

• Here the Python runtime is the execution runtime,
which is similar to the execution with Numpy.

• Eager tensors have a value in the Python code.

• With the eager execution, value-dependent dynamic
topologies (tree-RNNs) can be constructed and used.

http://home.agh.edu.pl/~horzyk/index-eng.php

1. Prepare Input (e.g. text, audio, images, video) and specify
the input dimension (size).

2. Define the Model: its architecture, build the computational
graph, define the sequential or functional style of the model
and the kind of the network (MLP, CNN, RNN etc.).

3. Specify the Optimizers (Stochastic Gradient Descent (SGD),
Root Mean Square (RMSprop), Adam etc.) to configure the
learning process.

4. Define the Loss Function (e.g. Mean Square Error (MSE),
Cross Entropy, Hinge) for checking the accuracy of the
achieved prediction to adapt and improve the model.

5. Train using training data, Test using testing/validation data,
and Evaluate the Model.

http://home.agh.edu.pl/~horzyk/index-eng.php

To start working with TensorFlow and Keras in Jupyter Notebook, you have to
install them using the following commands in the Anaconda Prompt window:

conda install pip # install pip in the virtual environment

pip install --upgrade tensorflow # for python 2.7

pip3 install --upgrade tensorflow # for python 3.*

It is recommended to install tensorflow with parameter –gpu to use GPU unit

and make computations faster:

pip install tensorflow-gpu

$ pip install Keras

If successfully installed check in Jupyter Notebook the version of the

TensorFlow using:

http://home.agh.edu.pl/~horzyk/index-eng.php

We will try to create and train a simple Convolutional Neural Network (CNN) to
tackle with handwritten digit classification problem using MNIST dataset:

Each image in the MNIST dataset is 28x28 pixels and contains a centred,
grayscale digit form 0 to 9. Our goal is to classify these images to one of the ten
classes using ten output neurons of the CNN network.

https://victorzhou.com/blog/intro-to-cnns-part-1/
http://yann.lecun.com/exdb/mnist/
http://home.agh.edu.pl/~horzyk/index-eng.php

Jupyter Notebook

The Jupyter Notebook:
• is an open-source web application that allows you to create and share

documents that contain live code, equations, visualizations, and narrative text;

• includes data cleaning and transformation, numerical simulation, statistical
modeling, data visualization, machine learning, and much more.

We will use it to demonstrate various algorithms, so you are asked to install it.

Jupyter in your browser Install a Jupyter Notebook

http://home.agh.edu.pl/~horzyk/index-eng.php
https://jupyter.org/try
https://jupyter.org/install.html

Jupyter Notebook & Anaconda

Install Jupyter using Anaconda with built in Python 3.7+
• It includes many other commonly used packages for scientific computing, data

science, machine learning, and computational intelligence libraries.

• It manages libraries, dependencies, and environments with Conda.

• It allows developing and training various machine learning and deep learning
models with scikit-learn, TensorFlow, Keras, Theano etc.

• It supplies us with data analysis including scalability and performance with Dask,
NumPy, pandas, and Numba.

• It quickly visualizes results with Matplotlib, Bokeh, Datashader, and Holoviews.

And run it at the Terminal
(Mac/Linux) or Command
Prompt (Windows):

https://www.anaconda.com/distribution/
https://jupyter.readthedocs.io/en/latest/running.html#running
http://home.agh.edu.pl/~horzyk/index-eng.php

Anaconda Cloud

http://home.agh.edu.pl/~horzyk/index-eng.php
https://anaconda.org/adrianhorzyk/dashboard

Jupyter Notebook & PyCharm

It is recommended to install PyCharm for Anaconda:

https://www.jetbrains.com/pycharm/promo/anaconda/
http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.jetbrains.com/pycharm/download/download-thanks.html?code=PCC&platform=windowsAnaconda

Jupyter Notebook

PyCharm is a python IDE for Professional Developers
• It includes scientific mode to interactively analyze your data.

https://www.jetbrains.com/pycharm/
http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.jetbrains.com/pycharm/

Jupyter Notebook Dashboard

Running a Jupyter Notebook
in your browser:
• When the Jupyter Notebook

opens in your browser, you will see
the Jupyter Notebook Dashboard,
which will show you a list of
the notebooks, files, and
subdirectories in the directory
where the notebook server was
started by the command line
„jupyter notebook”.

• Most of the time, you will wish to
start a notebook server in the highest
level directory containing notebooks.
Often this will be your home
directory.

http://home.agh.edu.pl/~horzyk/index-eng.php

Starting a new Python notebook

Start a new Python notebook:
• Clicking New → Python 3

• And a new Python project in the Jupyter Notebook will be started:

http://home.agh.edu.pl/~horzyk/index-eng.php

Useful Packages and Libraries

In the next assignments and examples, we well use the following packages:

• numpy is the fundamental package for scientific computing with Python.

• h5py is a common package to interact with a dataset that is stored on an H5 file.

• matplotlib is a famous library to plot graphs in Python.

• PIL and scipy are used here to test your model with your own picture at the end.

They must be imported:

https://szyzjsuseqjcgnardvvexv.coursera-apps.org/notebooks/Week%202/Logistic%20Regression%20as%20a%20Neural%20Network/www.numpy.org
http://www.h5py.org/
http://matplotlib.org/
http://www.pythonware.com/products/pil/
https://www.scipy.org/
http://home.agh.edu.pl/~horzyk/index-eng.php

Import of libraries and setting of the parameters:

http://home.agh.edu.pl/~horzyk/index-eng.php

Defining of hyperparameters and the function presenting results:

http://home.agh.edu.pl/~horzyk/index-eng.php

Sample training examples from MNIST set (handwritten digits):

http://home.agh.edu.pl/~horzyk/index-eng.php

Loading training data, changing the shapes of the matrices storing training
and test data, transformation of the input data from [0, 255] to [0.0, 1.0]
range, and conversion of numeric class names into categories:

http://home.agh.edu.pl/~horzyk/index-eng.php

Building a neural network structure (computational model):

http://home.agh.edu.pl/~horzyk/index-eng.php

Compilation, optimization, data generation, augmentation and learning:

http://home.agh.edu.pl/~horzyk/index-eng.php

Model evaluation, convergence drawing and error charts:

http://home.agh.edu.pl/~horzyk/index-eng.php

Model evaluation, convergence drawing and error charts:

Here is the presentation of only 3 learning epochs!

We usually train such networks for several dozen epochs,

getting better results (accuracy) and smaller errors!

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

Generation of summaries of the learning process

http://home.agh.edu.pl/~horzyk/index-eng.php

Generation of a confusion (error) matrix in the form of a heat map:

http://home.agh.edu.pl/~horzyk/index-eng.php

Counting and filtering incorrectly classified test data:

http://home.agh.edu.pl/~horzyk/index-eng.php

247 out of 10,000
incorrectly classified
test patterns:

One might wonder
why the network
had difficulty in
classifying them?

Of course, such
a network can be
taught further to
achieve a smaller
error!

This network was
taught only for
3 epochs!

http://home.agh.edu.pl/~horzyk/index-eng.php

Now, let’s try to train the network for 50 epochs:

http://home.agh.edu.pl/~horzyk/index-eng.php

Graphs of learning convergence (accuracy) and error minimization (loss):

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

The confusion matrix has also improved: more patterns migrate
towards the diagonal (correct classifications) from other regions:

http://home.agh.edu.pl/~horzyk/index-eng.php

The number and the accuracy of correctly classified examples for
all individual classes increase:

However, we can see that the process of network training is not over yet
and should be continued for several dozen epochs.

http://home.agh.edu.pl/~horzyk/index-eng.php

The number of misclassified examples after 50 epochs compared to
3 epochs has dropped from 247 to 37 out of 10,000 test examples,
resulting in an error of 0.37%. Here are the misclassified examples:

http://home.agh.edu.pl/~horzyk/index-eng.php

Classification of images 32 x 32 pixels to 10 classes (3 learning epochs):

http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/index-eng.php

Compilation, optimization , data augmentation (generation) and training:

http://home.agh.edu.pl/~horzyk/index-eng.php

Results of training after tree training epochs:

http://home.agh.edu.pl/~horzyk/index-eng.php

Confusion (error)
martrix after three
training epochs:

We usually train such
networks for min. a few
dozens of epochs to get
satisfying results ...

http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s train the network longer (50 epochs, a few hours) and as you can see the
error (val_loss) systematically decreases, and the accuracy (val_acc) increases:

http://home.agh.edu.pl/~horzyk/index-eng.php

The graphs also show this convergence process:

Why results on test data are better than on train data?
Mini-batch mode and regularization mechanisms, such as Dropout and L1/L2 weight regularization,

are turned off at the testing time, so the model does not change as during training time.

That is why the train error is always bigger, which can appear weird

in view of classic machine learning models.

http://home.agh.edu.pl/~horzyk/index-eng.php

The confusion matrix has also improved: more examples migrate
towards the diagonal (correct classifications) from other regions:

http://home.agh.edu.pl/~horzyk/index-eng.php

The number and the accuracy of correctly classified examples
for all individual classes increase:

However, we can see that the process of network training is not over yet
and should be continued for several dozen epochs.

http://home.agh.edu.pl/~horzyk/index-eng.php

Examples of misclassifications after 50 training epochs for a test set
of 10,000 examples: The number of misclassifications decreased
from 7929 after 3 epochs to 1615 after 50 epochs.

We can see that in the case of this training set, the convolution
network should be taught much longer (16.15% of incorrect
classifications remain) or the structure or the hyperparameters of
the model should be changed.

http://home.agh.edu.pl/~horzyk/index-eng.php

Sample misclassified examples:

0

1

2

3

4

5

6

7

8

9

http://home.agh.edu.pl/~horzyk/index-eng.php

Sample misclassified examples:

0

1

2

3

4

5

6

7

8

9

http://home.agh.edu.pl/~horzyk/index-eng.php

We will try to use CNNs to biomedical data, e.g. medical image
classification.

Search for some free-available medical images and try to adapt
the described model into them.

http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s start with powerful computations!
✓ Questions?

✓ Remarks?

✓ Suggestions?

✓ Wishes?

http://home.agh.edu.pl/~horzyk/index-eng.php

Bibliography and
Literature1. Nikola K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence, In Springer Series

on Bio- and Neurosystems, Vol 7., Springer, 2019.

2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016, ISBN 978-1-59327-741-3 or PWN
2018.

3. Holk Cruse, Neural Networks as Cybernetic Systems, 2nd and revised edition

4. R. Rojas, Neural Networks, Springer-Verlag, Berlin, 1996.

5. Convolutional Neural Network (Stanford)

6. Visualizing and Understanding Convolutional Networks, Zeiler, Fergus, ECCV 2014

7. IBM: https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html

8. NVIDIA: https://developer.nvidia.com/discover/convolutional-neural-network

9. JUPYTER: https://jupyter.org/

10. https://www.youtube.com/watch?v=XNKeayZW4dY

11. https://victorzhou.com/blog/keras-cnn-tutorial/

12. https://github.com/keras-team/keras/tree/master/examples

13. https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8

14. https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html

15. http://coursera.org/specializations/tensorflow-in-practice

16. https://udacity.com/course/intro-to-tensorflow-for-deep-learning

17. MNIST sample: https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-

f9a1021f6ef0

18. Heatmaps: https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-

4478ef15d87f

University of
Science and
Technology

in Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

Google: Horzyk

file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
https://www.youtube.com/watch?v=XNKeayZW4dY
https://victorzhou.com/blog/keras-cnn-tutorial/
https://github.com/keras-team/keras/tree/master/examples
https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
https://blog.tensorflow.org/2019/09/tensorflow-20-is-now-available.html
http://coursera.org/specializations/tensorflow-in-practice
https://udacity.com/course/intro-to-tensorflow-for-deep-learning
https://medium.com/datadriveninvestor/image-processing-for-mnist-using-keras-f9a1021f6ef0
https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-4478ef15d87f
http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

